Total Synthesis of (-)-Motuporin

Tao Hu and James S. Panek* Department of Chemistry, Metcalf Center for Science and Engineering, 590 Commonwealth Avenue, Boston University, Boston, Massachusetts 02215

Received March 15, 1999

Motuporin **1a** is a cyclic pentapeptide recently identified through an enzyme assay-guided screening of crude extracts from the marine sponge Theonella swinhoei Gray (Figure 1).¹ Motuporin and the structurally related agent nodularin **1b**, isolated from the cyanophyte *Nodularin spumogena*,² have displayed potent inhibitory activity against a number of protein phosphatases. Members of a related family of hepatotoxic heptapeptides, the mycrocystins, have also displayed inhibitory activity against protein phosphatases.³ The crucial biochemical role that the protein serine and threonine phosphatases (PSPs) play in intracellular signaling processes has generated much interest in the ability of peptides bearing Adda [(2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid] to inhibit the activity of these phosphatases.^{4–6} The first total synthesis of motuporin was reported in 1995 from Schreiber's group, and the synthesis of microcystin was recently achieved by Chamberlin and co-workers.⁵ This Communication reports a highly convergent, asymmetric synthesis of 1a and documents an efficient Pd(0)-mediated cross-coupling reaction for the construction of the trisubstituted (*E*,*E*)-diene in a peptide system.

Our approach, outlined in Figure 1, utilized asymmetric crotylation methodology for the introduction of the stereogenic centers. Motuporin (1a) is divided into two principal fragments, N-Boc-valine-Adda fragment 2 and the remaining tripeptide fragment 3. Disconnection of 2 at the C5–C6 bond produces two subunits, the vinyl metal species (4, C6-C10 subunit) and the (*E*)-vinyl iodide dipeptide 5. Both the righthand subunit 5 and the α -azido ester 6 are conveniently derived from azido alcohol 7. Further retrosynthetic disconnection of the individual subunits produced two chiral silane reagents, of which the anti-azido silane 9 is derived from the unsubstituted silane reagent (S)-8 through the stereoselective azidation of its β -silyl enolate.⁷

Synthesis of 2 required the construction of the right-hand subunit 5 and the C6-C10 subunit 4 which were joined together through a Pd(0)-catalyzed cross-coupling reaction to construct the carbon framework of this valine-Adda dipeptide fragment. The preparation of the left-hand subunit 4 has been previously reported in our synthesis of Adda

(3) Goldberg, J.; Huang, H.; Kwon, Y.; Greengard, P.; Nairn, A. C.; Kuriyan, J. *Nature* **1995**, *376*, 745–753 and references therein.

(4) Synthesis of Adda derivatives: (a) Namikoshi, M.; Rinehart, K. L.; G. Synthesis of Adda derivatives. (a) Valinkers, M., Hundert, N. L. 1989, 30, 4349–4352. (b) Chakraborty, T. K.; Joshi, S. P. *Tetrahedron Lett.* 1989, 31, 2043–2046. (c) Beatty, M. F.; White, C. J.; Avery, M. A. J. Chem. Soc., *Perkin Trans.* 11992, 1637–1641. (d) Kim, H. Y.; Toogood, P. L. *Tetrahedron* Lett. 1996, 37, 2349-2352. (e) D'Aniello, F.; Mann, A.; Taddei, M. J. Org. Lett. 1996, 37, 2349–2352. (c) D'Amerio, F., Maini, A., Faduer, M. J. Ofg.
Chem. 1996, 61, 4870–4871. (f) Sin, N.; Kallmerten, J. Tetrahedron Lett.
1996, 37, 5645–5648. (g) Cundy, D. J.; Donohue, A. C.; McCarthy, T. D.
Tetrahedron Lett. 1998, 39, 5125–5128.
(5) (a) Valentekovich, R. L.; Schreiber, S. L. J. Am. Chem. Soc. 1995,

17, 9069–9070. (b) Humphrey, J. M.; Aggen, J. B.; Chamberlin, A. R. J. Am. Chem. Soc. **1996**, *118*, 11759–11770.

 (6) Panek, J. S.; Hu, T. J. Org. Chem. 1997, 62, 4914–4915.
(7) Panek, J. S.; Beresis, R.; Xu, F.; Yang, M. J. Org. Chem. 1991, 56, 7342 - 7344.

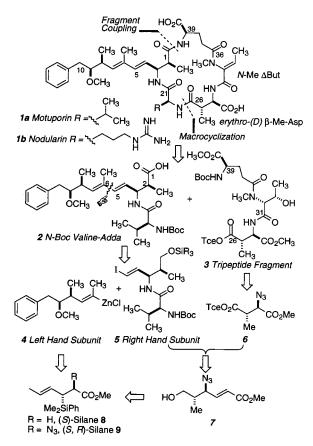
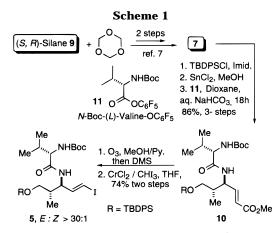
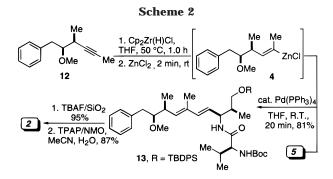



Figure 1.



utilizing asymmetric crotylation methodology.⁶ The 1,3-azido alcohol 7, obtained via a sequential diastereoselective crotylation and allylic azide isomerization reaction,⁶ was protected as its TBDPS ether, at which point the azide group was subsequently reduced with SnCl₂ in anhydrous methanol (0 °C \rightarrow rt, 4 h). The resulting crude amine was directly condensed with the pentafluorophenyl ester activated N-Boc-L-valine in a dioxane/aqueous NaHCO₃ biphasic reaction system at rt to afford dipeptide 10 in high yield (86%, three steps, Scheme 1). Oxidative cleavage of the (E)-olefin of 10 gave a sensitive aldehyde which was immediately subjected to Takai's homologation protocol⁸ to afford the geometrically pure (*E*)-vinyl iodide **5** in 74% yield, completing the synthesis of the right-hand fragment.

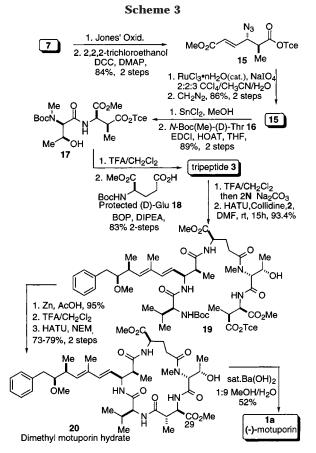
⁽¹⁾ Dilip de Silva, E.; Williams, D. E.; Anderson, R. J.; Klix, H.; Holmes, C. F. B.; Allen, T. M. *Tetrahedron Lett.* **1992**, *33*, 1561–1564.
(2) (a) Rinehart, K. L.; Harada, K.; Namikoshi, M.; Munro, M. H. G.;

W. W. J. Am. Chem. Soc. **1988**, 110, 8557–8558. (b) Namikoshi, M.; Carmichael, W. W. J. Am. Chem. Soc. **1988**, 110, 8557–8558. (b) Namikoshi. M.; Choi, B. W.; Sakai, R.; Sun, F.; Rinehart, K. L.; Carmichael, W. W.; Evans, W. R.; Cruz, P.; Munro, M. H. G.; Blunt, J. W. J. Org. Chem. **1994**, 59, 2349– 2357

⁽⁸⁾ Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408-7410

Coupling of 4 and 5 utilized a modified Negishi protocol,⁹ catalyzed by Pd(Ph₃P)₄. Hydrozirconation of alkyne 12⁶ using Schwartz's reagent¹⁰ [Cp₂Zr(H)Cl] (2.0 equiv, THF, 50 °C, 1.0 h) produced the (*E*)-trisubstituted zirconate as a single isomer.^{9a} This was followed by an in situ transmetalation with anhydrous $ZnCl_2$ (3.0 equiv, rt, 2.0 min) to afford the vinyl zinc species 4. This material was immediately treated with vinyl iodide 5 (1.0 equiv) and $Pd(PPh_3)_4$ (5 mol %), affording the configurationally pure (E, E)-diene in 81% yield (Scheme 2).¹¹ This one-pot sequence involving a bimetallicmediated transformation gave the fully functionalized valine-Adda precursor 13.12 This intermediate was readied for fragment coupling by conversion to the carboxylic acid via a two-step sequence: (i) silyl group deprotection with TBAF. SiO₂ (2.5 equiv, rt, 4 h, 95%) and (ii) oxidation of the derived primary alcohol with a modified Ley's oxidation protocol (TPAP/NMO, CH₃CN, 1 h; then H₂O, rt, 18 h),¹³ afforded the N-Boc-valine-Adda fragment 2 in 87% yield.

The preparation of tripeptide **3** began with the elaboration of intermediate **7** (Scheme 3). Oxidation of 1,3-azido alcohol **7** followed by protection of the carboxylic acid as a trichloroethyl ester gave **14** in 84% yield (two steps). Olefin oxidation (RuCl₃, NaIO₄) of **14**, followed by exposure of the resulting α -azido acid to diazomethane (Et₂O, 0 °C), afforded methyl ester **15**. Reduction of the azido group of **15** using SnCl₂ (1.5 equiv) produced the free amine, which was coupled with *N*-Boc(Me)-D-threonine **16**¹⁴ (1.1 equiv) under standard peptide coupling conditions to give dipeptide **17** (89%, two steps). Deprotection of the Boc group in **17**, followed by BOP-induced amide bond formation with the protected D-glutamate **18**,¹⁴ completed the formation of tripeptide **3**.


The crucial fragment coupling reaction, $[\mathbf{2} + \mathbf{3}]$, which provides the cyclization precursor **19**, was based on Carpino's procedure using HATU.¹⁵ Deprotection of tripeptide **3**, followed by treatment with **2** in the presence of HATU/ collidine in DMF, gave the protected pentapeptide **19** in 93.4% yield (Scheme 3). This coupling proceeded without any detectable level of epimerization.¹⁶ Reductive removal of the trichloroethyl group using zinc/acetic acid (rt, 4 h, 95%) was followed by *N*-terminal Boc deprotection to afford the amine

(11) More conventional cross-coupling protocols such as the Stille coupling reaction proved to be less efficient, as only modest yield (20–50%) was achieved. In addition, considerable levels of double bond isomerization occurred during the cross-coupling reactions. (12) To our knowledge, this is the first documentation of a Negishi-type

(12) To our knowledge, this is the first documentation of a Negishi-type coupling reaction performed with a peptide system. It is notable that this strategy may be suitable for the preparation of structurally diverse cyclicpeptides for the SAR study of the motuporin family.

(13) For a review of Ley's oxidation, see: Ley, S.; Norman, J.; Griffith, W.; Marsden, S. *Synthesis* **1994**, 639–666.

(14) For preparation of this compound, see Supporting Information.

as its TFA salt which was set for macrocyclization. This intermediate underwent an efficient cyclization in the presence of HATU and *N*-ethylmorpholine yielding macrocycle **20** in 79% yield.¹⁷ Treatment of **20** with Ba(OH)₂ resulted in the simultaneous hydrolysis of both methyl esters together with the in situ dehydration of *N*-methylthreonine.^{5a} Upon acidification with 1 N HCl to pH 2 and reverse phase HPLC purification, synthetic motuporin **1a** was obtained as its diacid form in 52% yield. The spectroscopic and analytical properties of this material were identical in all respects with the reported data.^{1,5a,18} Treatment of **1a** with NaHCO₃/ MeOH provided the disodium salt of motuporin, which agreed in all respects (¹H and ¹³C NMR, [α]_D, IR, FAB-HRMS, rp-HPLC) with the data reported earlier.^{1,5a}

In closing, the total synthesis of motuporin was completed in 28 steps, with a longest linear sequence of 16 steps (15.8% overall). The synthesis emphasized emerging synthetic methodology: an efficient Pd(0)-catalyzed cross-coupling reaction of a configurationally well-defined vinyl zinc intermediate with an (*E*)-vinyl iodide for the construction of the trisubstituted (*E*,*E*)-diene in a peptidic system. Six of the eight stereogenic centers associated with motuporin were introduced using asymmetric crotylsilane bond construction methodology.

Acknowledgment. Financial support was obtained from NIH/NCI (RO1 CA56304).

Supporting Information Available: Experimental procedures, spectral data for all new compounds, and copies of proton and carbon NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

JO9904617

^{(9) (}a) Panek, J. S.; Hu, T. J. Org. Chem. **1997**, 62, 4912–4913. (b) Negishi, E.; Okukado, N.; King, A. O.; Van Horn, D. E.; Spiegel, B. I. J. Am. Chem. Soc. **1978**, 100, 2254–2256.

 ^{(10) (}a) Hart, D. W.; Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115–8116.
(b) Buchwald, S. L.; La Maire, S. J.; Nielsen, R. B.; Watson, B. T.; King, S. M. Tetrahedron Lett. 1987, 28, 3895–3898.

^{(15) (}a) Čarpino, L. A.; El-Faham, A. J. Org. Chem. **1994**, 59, 695. (b) Carpino, L. A. J. Am. Chem. Soc. **1993**, 115, 4397. (c) Carpino, L. A.; El-Faham, A. J. Org. Chem. **1995**, 60, 3561. For an excellent review of peptide coupling methods, see: Humphrey, J. M.; Chamberlin, R. Chem. Rev. **1997**, 97, 2243–2266.

⁽¹⁶⁾ Satisfactory spectroscopic and analytic data (¹H and ¹³C NMR, IR, $[\alpha]_D$, MS, HRMS) were obtained for all new compounds. Ratios of diastereomers were determined by ¹H NMR (400 MHz).

⁽¹⁷⁾ Hale, K. J.; Cai, J.; Williams, G. Synlett 1998, 149-152.

⁽¹⁸⁾ Robert J. Valentekovich, Ph.D. Thesis, Harvard University, June 1995.